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A three-dimensional computational model is developed for simulating the flag motion
in a uniform flow. The nonlinear dynamics of the coupled fluid–flag system after
setting up of flapping is investigated by a series of numerical tests. At low Reynolds
numbers, the flag flaps symmetrically about its centreline when gravity is excluded,
and the bending in the spanwise direction is observed near the corners on the trailing
edge. As the Reynolds number increases, the spanwise bending is flattened due to the
decrease of the positive pressure near the side edges as well as the viscous force of
the fluid. At a certain critical Reynolds number, the flag loses its symmetry about the
centreline, which is shown to be related to the coupled fluid–flag instability. The three-
dimensional vortical structures shed from the flag show a significant difference from
the results of two-dimensional simulations. Hairpin or O-shaped vortical structures
are formed behind the flag by connecting those generated at the flag side edges
and the trailing edge. Such vortical structures have a stabilization effect on the flag
by reducing the pressure difference across the flag. Moreover, the positive pressure
near the side edges is significantly reduced as compared with that in the center
region, causing the spanwise bending. The Strouhal number defined based on the
flag length is slightly dependent on the Reynolds number and the flag width, but
scales with the density ratio as St ∼ ρ−1/2. On the other hand, the flapping-amplitude-
based Strouhal number remains close to 0.2, consistent with the values reported for
flying or swimming animals. A flag flapping under gravity is then simulated, which
is directed along the negative spanwise direction. The sagging down of the flag and
the rolling motion of the upper corner are observed. The dual effects of gravity are
demonstrated, i.e. the destabilization effect like the flag inertia and the stabilization
effect by increasing the longitudinal tension force.

1. Introduction
The flapping of flags in the wind is a commonplace and familiar phenomenon, yet still
puzzles researchers due to its extremely complicated dynamics. Flapping dynamics
is also an essential aspect of the tail and wing motions of swimming and flying
animals. When a flag undergoes passive flapping, it exerts inertial and elastic forces
on the fluid, while the fluid acts on the flag through pressure and viscosity. Together,
these fluid–flag interactions can give rise to self-sustained oscillations at certain
natural frequencies. Even for active flapping motions such as those of swimming and
flying animals, the flapping frequency cannot be selected arbitrarily (Triantafyllou,
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Triantafyllou & Yue 2000; Fish & Lauder 2006). Recent studies have disclosed a
simple relationship between the flapping frequency, amplitude and forward speed for
a wide range of species of animals to fly or swim with high propulsive efficiency
(Taylor, Nudds & Thomas 2003). When swimming in the wake of upstream obstacles
or other animals, fishes were found to extract energy from surrounding fluid by
synchronizing the flapping motion with environmental vortices and reaching a state
of passive swimming (Liao et al. 2003; Beal et al. 2006; Eldredge & Pisani 2008; Jia &
Yin 2008; Ristroph & Zhang 2008). Hence, the study of flapping behaviour sheds
light on such biological processes. Moreover, flapping dynamics is also of importance
in areas such as paper engineering (Watanabe et al. 2002a,b), socio-medical conditions
like human snoring (Huang 1995; Balint & Lucey 2005), ocean/river power generation
(Allen & Smits 2001; Taylor et al. 2001) and so on.

Fluid–structure interactions such as the flag-in-the-wind problem are a challenge
to study by experiment and modelling on account of their complex geometries and
freely moving boundaries. Researchers have risen to this challenge in an array of
interesting studies (Päıdoussis 2004). Taneda (1968) carried out experiments on a
hanging flag in a wind tunnel and observed both the two- and three-dimensional
oscillation modes of the waving motions. In the case of three-dimensional mode, one
of the two corners on the trailing edge was found to roll up randomly. Zhang et al.
(2000) visualized the motion of flexible filaments in a flowing soap film as a two-
dimensional flag model. They found two distinct stable states for a single filament: the
stretched-straight state and the self-sustained flapping state. More recently, Shelley,
Vandenberghe & Zhang (2005) confirmed this bistable property in a water tunnel
experiment using a heavy flexible sheet, and found that the non-dimensional flapping
frequency is consistent with that of animal locomotion. For a two-dimensional flag,
numerical simulations discovered three regimes, i.e. straight and stationary stable
regime, regular flapping regime and chaotic flapping regime, by changing the flag-to-
fluid mass ratio (Connell & Yue 2007) or the bending rigidity (Alben & Shelley 2008)
or the free-stream velocity (Michelin, Llewellyn Smith & Glover 2008).

To predict the critical velocity of incoming flow for the onset of flapping of a flag
(or flutter of a plate) and to compare with experimental data, various theoretical
models were proposed for this fluid–flag coupled system. In these theoretical works,
the flapping modes were assumed to be two-dimensional and linear beam models
were usually adopted for the flag, while the fluid loads were obtained using certain
approximations, e.g. Theodorsen’s theory (Huang 1995, Argentina & Mahadevan
2005, Manela & Howe 2009a), potential flow theory (Guo & Päıdoussis 2000) and
slender-body theory (Lemaitre, Hémon & de Langre 2005). Furthermore, nonlinear
flag models were developed based on the inextensibility condition to study the limit
cycle oscillation state and the nature of bifurcation leading to flapping (Yadykin,
Tenetov & Levin 2001; Tang, Yamamoto & Dowell 2003; Tang & Päıdoussis 2007).
The nonlinearity of the aerodynamics was also taken into account by solving the
Navier–Stokes equations on a body-fitted mesh (Watanabe et al. 2002a; Balint &
Lucey 2005). Moreover, the flag aspect ratio effect was investigated using a two-
dimensional flag model by resorting to the data from a three-dimensional simulation
(Argentina & Mahadevan 2005). A theoretical model for a plate with finite span
immersed in a three-dimensional potential flow was reported in Eloy, Souilliez &
Schouveiler (2007) and Eloy et al. (2008) by assuming a two-dimensional flutter
motion. It was shown that a flag of finite spanwise width is more stable than that
of infinite spanwise width. The development of new numerical methods and the
improvement in computational power have made it an easy task to perform direct
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simulations of a two-dimensional fluid flow interacting with flexible filaments or plates
(Zhu & Peskin 2002; Farnell, David & Barton 2004; Huang, Shin & Sung 2007).
However, few numerical studies have attempted to model a three-dimensional flag
immersed in a viscous fluid flow. Kim & Peskin (2007) presented a three-dimensional
flag flapping in wind as a numerical example of their penalty immersed boundary
method by extending their two-dimensional filament formulation. Moreover, in the
field of computer graphics, physically based models were introduced for simulating
motion of cloth (Terzopoulos & Fleischer 1988; Li, Damodaran & Gay 1996).

In the present study, we sought to simulate a three-dimensional flapping flag in
a uniform flow, manipulating in the framework of the immersed boundary method
developed by Huang & Sung (2009). The flag motion equation is derived using the
variational derivative of the deformation energy and solved on a Lagrangian grid. On
the other hand, the Navier–Stokes equations are discretized on an Eulerian grid and
solved by the fractional step method. The Eulerian fluid motion and the Lagrangian
IB motion are connected by utilizing a smoothed approximation of the Dirac delta
function (Peskin 2002). After developing the numerical method, we perform a series of
simulations of the three-dimensional fluid–flag coupled system. The instantaneous flag
motion is analysed under various conditions, and the surrounding vortical structures
are identified. The flapping frequency is calculated and the effects of the flag width
and density are evaluated. In this paper, we mainly focus on the nonlinear dynamics
of the fluid–flag system after setting up of flapping by direct simulations, rather than
finding the critical fluid velocity for the onset of flapping as in most of the previous
studies. Although the flapping mode was usually assumed to be two-dimensional at
the instability threshold (Eloy et al. 2007; Tang & Päıdoussis 2007), the deflection
along the spanwise direction occurs for large-amplitude flapping due to the fluid
loading. Moreover, the cases with gravity included in the simulation are also studied
where the sagging down of the flag occurs. These three-dimensional effects on the flag
flapping dynamics are investigated numerically in detail, because these phenomena
are so familiar to us but only few previous studies have taken into account these
effects so far (Shelley et al. 2005; Kim & Peskin 2007). In § 2, we propose the
formulation for the fluid–flag system and briefly describe the numerical method. The
results and discussion are presented in § 3. We first consider the gravity-free case in
§ § 3.1–3.3, where several issues are addressed including the spanwise bending of the
flag, visualization of the surrounding flow field and effects of the Reynolds number,
the flag density and the flag width. Then, in § 3.4 the effect of gravity on the flapping
flag is discussed. Finally, a summary of the present study is given in § 4.

2. Problem formulation and numerical method
2.1. Flag motion

The flag motion is described by Lagrangian variables. A curvilinear coordinate
system (s1, s2) is attached to the flag, as shown in figure 1. Among the four boundaries,
one is fixed at s1 = 0, which is aligned along the z-axis, while the other three are free
boundaries. The longitudinal coordinate s1 ranges from 0 to L, and the spanwise
coordinate s2 ranges from 0 to H, where L and H denote the length and width of
the flag, respectively. Kim & Peskin (2007) used a cylindrical flagpole at the leading
edge of the flag, which is aligned with the top edge but is extended below the bottom
edge. Here we neglect the flagpole to keep the symmetry of geometry about the flag
centreline, i.e. s2 =H/2, and to exclude the influence of vortex shedding from the
flagpole (Manela & Howe 2009b).
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Figure 1. Schematic of the Lagrangian grid system and its curvilinear coordinates (s1, s2) on
the flag. Points A, B and C denote the lower corner, the midpoint and the upper corner on the
trailing edge, respectively.

To derive the formulation of the elastic force along the flag, we start from the
principle of virtual work and use the variational derivative of the elastic energy. Let
X(s1, s2, t) denote the Cartesian coordinates of an arbitrary point on the flag at time
t. Depending on the material properties, the elastic energy stored in the flag can
be expressed as a certain function of deformations, including stretching, shearing,
bending and twisting. Here we use the following form

E(X) =

∫
S

2∑
i,j=1

[
cT
ij

(
Tij − T 0

ij

)2
+ cB

ij

(
Bij − B0

ij

)2
]
ds1 ds2 (1)

where Tij = (∂ X/∂si · ∂ X/∂sj ) denotes the stretching and shearing effects, Bij =
((∂2 X/∂si∂sj ) · (∂2 X/∂si∂sj ))

1/2 denotes the bending and twisting effects, cT
ij and cB

ij

are the corresponding coefficients and summation convention is not applied on both
i and j. In (1), the superscript ‘0’ denotes the initial value; we use

T 0 =

(
1 0

0 1

)
and B0 =

(
0 0

0 0

)
,

thereby setting the flag in an initially flat state. In this study, we assume that the flag
material is inextensible in both the s1 and s2 directions; for simplicity, this constraint is
imposed by making the stretching coefficients cT

11 and cT
22 sufficiently large. Moreover,

large cT
12 and cT

21 are also used to resist in-plane shear. Note that the elastic energy
defined in (1) is invariant to rigid motions of the flag.

The elastic force Fe is then obtained by using the variational derivative of the
energy functional E(X) (cf. Appendix A) and is expressed as

Fe =

2∑
i,j=1

[
∂

∂si

(
σij

∂ X
∂sj

)
− ∂2

∂si∂sj

(
γij

∂2 X
∂si∂sj

)]
, (2)
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where σij = 4cT
ij (Tij − T 0

ij ) and γij = 2cB
ij (i, j =1, 2). In the following, we use ϕij = 4cT

ij as
the stretching and shearing coefficients and γij as the bending and twisting coefficients.
Note that a different formulation of Bij is used in (1) from that of Huang & Sung
(2009), which results in a different expression of γij and physically denotes different
material properties.

After obtaining the elastic force, we can write the governing equation of the flag
motion in the following form:

ρ1

∂2 X
∂t2

=

2∑
i,j=1

[
∂

∂si

(
σij

∂ X
∂sj

)
− ∂2

∂si∂sj

(
γij

∂2 X
∂si∂sj

)]
+ ρ1 g − F, (3)

where ρ1 denotes the extra flag area density, g denotes gravity and F denotes
the Lagrangian forcing exerted on the flag by the surrounding fluid. Note that the
surrounding fluid density has been subtracted from ρ1, and the actual flag area density
should be ρ1+cρ0, where ρ0 is the fluid density and c is the flag thickness. We introduce
the following characteristic scales; the flag length L for the length, L/U∞ for the time,
where U∞ denotes the far-field velocity, ρ1U

2
∞
/
L for the Lagrangian forcing F, ρ1U

2
∞

for the stretching and shearing coefficients ϕij as well as σij and ρ1U
2
∞L2 for the bending

and twisting coefficients γij . Thus, (3) can be written in the non-dimensional form

∂2 X
∂t2

=

2∑
i,j=1

[
∂

∂si

(
σij

∂ X
∂sj

)
− ∂2

∂si∂sj

(
γij

∂2 X
∂si∂sj

)]
+ Fr

g
g

− F, (4)

where Fr = gL
/
U 2

∞ denotes the Froude number with g = |g|. For convenience, the
dimensionless quantities in (4) are written in the same form as their dimensional
counterparts. At the fixed boundary, we consider the simply supported condition in
the simulation, i.e.

X = (0, 0, s2),
∂2 X
∂s2

1

= 0 at s1 = 0. (5)

At the free boundaries, we have

∂2 X
∂s2

1

= 0,
∂3 X
∂s3

1

= 0 at s1 = L, (6)

∂2 X
∂s2

2

= 0,
∂3 X
∂s3

2

= 0 at s2 = 0 orH (7)

and

σij = 0, γij = 0 (i, j = 1, 2) . (8)

2.2. Fluid motion

The non-dimensional governing equations for an incompressible fluid flow are

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u + f , (9)

∇ · u = 0. (10)

Here, u = (u, v, w) is the velocity vector, p is the pressure, Re = ρ0U∞L/µ is the
Reynolds number, where ρ0 is the fluid density and µ is the dynamic viscosity, and
f is the momentum forcing applied to enforce the no-slip boundary condition on
the flag. Note that different characteristic densities ρ0 and ρ1 are used in the non-
dimensionalization of (9) and (4), respectively. In (9), the momentum forcing f is
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scaled by ρ0U
2
∞
/
L, while in (4) the Lagrangian counterpart F is scaled by ρ1U

2
∞
/
L.

This difference should be taken into consideration when transforming between the
Lagrangian and Eulerian momentum forcings.

2.3. Fluid–flag interaction

The immersed boundary method of Huang & Sung (2009) is adopted to deal with the
fluid–flag interaction. In the proposed method, two sets of Lagrangian point are used:
one is the structure position X obtained from the flag motion equation, and the other
is the corresponding IB point X ib which moves with the local fluid velocity U ib, i.e.

Xn+1
ib = Xn

ib + Un+1
ib �t, (11)

where the superscript n denotes the nth time step. To calculate U ib, an interpolation
of the fluid velocity onto the structure position X is performed:

U ib(s1, s2, t) =

∫
Ω

u(x, t)δ(X(s1, s2, t) − x) dx, (12)

where δ denotes the Dirac delta function (Peskin 2002). To enforce the no-slip
condition along the fluid–structure interface, the momentum forcing in (4) is
formulated as follows:

Fn = −κ
(

X̃
n+1

ib − 2Xn + Xn−1
)
, (13)

where κ is a large constant, and X̃n+1
ib is an estimation of the new position of the IB

point, i.e.

X̃
n+1

ib = Xn
ib + Un

ib�t. (14)

Note that the right-hand side of (13) is actually a discretization of the inertial force
term in (4) but differs by a multiplicative factor. Thus, (13) can be regarded as a
result of the flag motion equation by neglecting the elastic force term and multiplying
a relaxation factor. Essentially, it works as a feedback law as proposed by Goldstein
(1993). Replacing the unknown flag position at the next time step with an estimation of
the new position of the IB point enforces the flag to move with the local fluid velocity.

Then the Lagrangian momentum forcing term is transformed into the Eulerian
form by also using the Dirac delta function:

f (x, t) = ρ

∫
Γ

F(s1, s2, t)δ(x − X(s1, s2, t)) ds1 ds2, (15)

where ρ = ρ1/(ρ0L) denotes the mass ratio, which comes from the non-
dimensionalization. Note the fact that the Dirac delta function is three-dimensional
but there are only two integrals, ds1 and ds2, in (15), which indicates a jump in fluid
pressure across the flag.

2.4. Numerical method

The discretized form of the flag motion equation (4) is written as

Xn+1 − 2Xn + Xn−1

�t2
= K Xn+1 + Fr

g
g

− Fn + BC, (16)

where K represents the discrete operator of the elastic force term (cf. Appendix B),
and BC is the boundary condition vector which contains the known positions at the
fixed boundary. After rearrangement, (16) becomes

AXn+1 = Rn. (17)
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Here A = I − �t2K , where I is the unit matrix of size M(N + 1) and Rn ≡ Xn +
�tUn + �t2Fr · g/g − �t2 Fn + �t2 BC by applying Un = (Xn − Xn−1)/�t . We found
that symmetry and positive definiteness of the matrix A are preserved in this study.
Hence, the conjugate gradient method can be utilized to solve (17) in an efficient
manner due to its fast convergence rate.

On the other hand, a fractional step method is adopted to solve the discretized
Navier–Stokes equations (Kim, Baek & Sung 2002), which can be written as,

un+1 − un

�t
+ Nun+1 = −Gpn+1/2 +

1

2Re
(Lun+1 + Lun) + f n + mbc, (18)

Dun+1 = 0 + cbc, (19)

where N, G, L and D are the linearized discrete convective operator, the discrete
gradient operator, the discrete Laplacian operator and the discrete divergence
operator, respectively. The velocity boundary conditions for the momentum equations
and the continuity equation have been imposed on mbc and cbc, respectively. The
momentum forcing term f n is calculated using (15), which is discretized as

f n = ρ

M∑
i=0

N∑
j=0

Fn
i,j δh

(
x − Xn

i,j

)
�s1�s2, ∀ x ∈ gh, (20)

where δh(x) = φ (x/h) φ (y/h) φ (z/h) /h3 with φ the four-point smoothed approxi-
mation of the delta function (Peskin 2002), and gh is its support. Here h denotes the
mesh size; in the present simulations a mesh of uniform size is distributed around the
IB, i.e. h = �x = �y = �z. After obtaining the fluid velocity field, we use the smoothed
delta function to interpolate the fluid velocity on the flag as dictated in (12),

Un+1
ib =

∑
x∈gh

un+1δh(X − x)h3. (21)

The overall process for simulating flag motion in a uniform flow at each time step
is briefly summarized as follows: (i) calculate the Lagrangian momentum forcing Fn

using (13) and spread it to the Eulerian grid using (20); (ii) solve (18) and (19) to
obtain updated fluid velocity field and pressure field, and calculate the new position of
the IB point using (11); (iii) solve (17) to obtain the flag position at the new time step.
In the present method, the Eulerian fluid motion and the Lagrangian flag motion are
solved independently. In this way, the massive boundary can be handled in an efficient
manner with retention of the use of the fast Fourier transform (FFT) method. More
details of the present numerical method can be found in Huang & Sung (2009), where
the solver was verified using several numerical examples. Moreover, validations of the
filament simulation as a two-dimensional flag problem were provided in Huang et al.
(2007).

3. Results and discussion
In the present simulations, the computational domain for fluid flow is a rectangular
box, extending from (−1, −4, −1) to (7, 4, 1) in the streamwise (x), transverse (y)
and spanwise (z) directions, respectively. Here the domain sizes are scaled by the
flag length L. Dirichlet boundary conditions (u =U∞, v = 0, w =0) are used at the
inflow (x = −1) and far-field boundaries (y = ±4), a convective boundary condition
(∂u/∂t+UC∂u/∂x =0) is used at the outflow (x = 7) and periodic boundary conditions
are used in the spanwise direction. A grid size of 513 × 151 × 129 is used to discretize
the computational domain. The grid is uniformly distributed along the x- and z-axis,
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while stretched in the y-axis. The fixed boundary of the flag (s1 = 0) is aligned with the
z-axis, with its midpoint (s1 = 0, s2 = H/2) coinciding with the origin of the Eulerian
coordinate system, as shown in figure 1. The flag is discretized by a uniform mesh
�s1 =�s2 = 1/64, which is equivalent to the Eulerian grid spacings �x, �y and �z

near the IB. The flag is initially held at an angle of a = 0.1π from the xz plane, as
expressed by,

X(s1, s2, t = 0) = (s1 cos a, s1 sin a, s2 − H/2) . (22)

In the following simulations, the parameters of L =1.0, H =1.0, ρ = 1.0, φ11 =
φ22 = 103, φ12 = 10, γ11 = γ22 = γ12 = 0.0001 are used for the flag by default unless
otherwise stated. Gravity is first neglected in our simulations for the results presented
in § § 3.1–3.3, i.e. Fr = 0, while a flag flapping under gravity is specifically shown in
§ 3.4. The free constant in calculating the Lagrangian force by (13) is set to κ =105,
and a time step of �t = 0.0003 is used, which were chosen to ensure that the results
are converged.

3.1. Three-dimensional flapping motion

Figure 2 shows time histories of the streamwise, transverse and spanwise displacements
of points A, B and C on the trailing edge of the flag (figure 1) from their equilibrium
positions at three Reynolds numbers, i.e. Re = 100, 200 and 500. Correspondingly, the
instantaneous flag positions are shown in figure 3 at four time instants as labelled in
figure 2. The trailing edge reaches its maximum transverse position at the instants 1
and 3, while moving across the equilibrium position (y = 0) at the instants 2 and 4. A
longitudinal travelling wave is seen in the time series of instantaneous flag positions.

At Re =100 (figure 2a), the streamwise and transverse displacements (X′ and Y ′

respectively) of the mid-point B have larger amplitudes than those of the corner points
A and C, indicating that the flag is bended along the spanwise direction as directly
seen in figure 3(a). Since the longitudinal travelling wave flattens the deformation
in the spanwise direction, the bending of the flag is only apparent close to the two
corners on the trailing edge. Interestingly, the difference of X′ and Y ′ between the
mid-point and the corner points becomes smaller at Re = 200 (see figure 2b), and
the trailing edge is less bended (see figure 3b). The reason is that the viscous force
of fluid is increased as the Reynolds number decreases, and meanwhile the pressure
difference across the flag is reduced more significantly near the side edges. The bending
extent of the trailing edge is more clearly measured by checking the amplitude of the
spanwise displacement (Z′) of the corner points (figures 2a and 2b), which is smaller
at Re =200. Another observation on figure 2 shows that X′ and Z′ do not reach
their maximum positions at the instants 1 and 3 as Y ′, mainly due to the longitudinal
travelling wave on the flag.

Figure 4 shows a top view (in xy plane) of superposition of the longitudinal curves
passing points A, B and C. For Re = 100 and 200 (see figures 4a and 4b respectively),
the result of point A (left) is identical to that of point C (right), but the result of
point B (middle) shows a bigger ‘∞’ trajectory of the free end, which is formed by
the flapping of the flag with the longitudinal travelling wave and is more inhibited at
the side edges than the centre region. The ‘∞’ trajectory of point C can also be seen
clearly in figure 5, which shows the phase relation of the transverse position (Y) and
the streamwise and spanwise positions (X and Z respectively). Due to the bending
of the trailing edge, the YZ-phase relation also shows a ‘∞’ trajectory at Re =100
(figure 5a), while becoming a double ‘∞’ trajectory at Re = 200 (figure 5b), indicating
that the wavenumber is increased along the spanwise direction on the flag as the
Reynolds number increases.
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Figure 2. For caption see next page.
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Figure 2. Time histories of the streamwise, transverse and spanwise displacements of points
A, B and C (figure 1) from their equilibrium positions: (a) Re =100; (b) Re = 200; (c) Re =500.
Points 1, 2, 3 and 4 correspond sequentially to the four instants adopted in figure 3.

When the Reynolds number is increased to Re = 500, the flapping motion becomes
more complicated as seen in figure 2(c). The time history of X′ shows that two
waves are superposed unlike the cases at Re =100 and 200, where only a single wave
is observed. As a result, the flapping is asymmetric in the y direction, as shown in
figures 4(c) and 5(c). To see more clearly, the snapshots of the centreline passing point
B with a time interval of 0.3 are plotted in figure 6 for Re =500. During the first-half
period (figure 6a), the flag is moving leftwards and a wave is travelling towards the
free end. However, a wave is travelling backwards to the fixed end as the flag moves
rightwards during the second-half period (figure 6b). The backward travelling wave
is formed by reflection at the free end and is sustained under the condition that the
flag inertia overwhelms the viscous force of the surrounding fluid. At Re =100 and
200, the backward travelling wave is just damped by the fluid viscosity and is swept
downstream. Note that the formation of the backward travelling wave is also related
to the initial position of the flag.

Another effect of the increasing Reynolds number is the appearance of asymmetry
of the flag about its centreline (s2 = H/2), as shown by the spanwise displacement
(figure 2c). Furthermore, small-scale wave motions are generated on the flag (figure 3c)
and the YZ-phase relation of point C shows an irregular pattern (figure 5c). We use
the average spanwise position of points A and C to measure the asymmetry of the
flag, i.e. εZ = |ZA + ZC |. Figure 7 shows time histories of εZ at different Reynolds
numbers. Given a uniform initial flow field (figure 7a), εZ remains at a very low level
for Re = 100 and 200, while grows exponentially for Re =500. Hence, the appearance
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Figure 3. (Colour online) For caption see next page.
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Figure 3. (Colour online) Instantaneous positions of a flapping flag at the four instants as
labelled in figure 2: (a) Re = 100; (b) Re = 200; (c) Re = 500. Supplementary movie 1 available
at journals.cambridge.org/flm.

of asymmetry is a result of the coupled fluid–flag instability. To confirm the status of
symmetry at each Reynolds number, an initial random perturbation is added to the
uniform flow. As shown in figure 7(b), εZ decreases gradually for Re = 100 and 200,
while increases until saturated for Re = 500, indicating that the symmetry of flag is
stable for Re = 100 and 200, but unstable for Re =500. Moreover, a flag of different
width is also simulated for comparison. Figure 8 shows time histories of εZ = |ZA+ZC |
for H = 1.0 and 1.5. Both cases have a symmetric solution at Re = 100 (figure 8a),
while the magnitude of εZ is larger for H = 1.5. When the Reynolds number is
increased to 500 (figure 8b), the asymmetry develops gradually until saturated in both
cases, and the growth rate of εZ is increased as H increases.

3.2. Three-dimensional wake structures

Figure 9 shows vortical structures shed from the flag of H = 1.0 at the minimum
transverse position, corresponding to the instant 1 labelled in figure 2, for Re = 100,
200 and 500. Here the λ2 criterion (Jeong & Hussain 1995) is used to identify the
vortical structures and an isovalue of λ2 = −0.2 is chosen to plot the three-dimensional
contours. Moreover, the pressure contours in the xy plane of z = −0.5, 0 and 0.5 at
each Reynolds number are displayed in figure 10, where the flag side edges and
centreline are also plotted. Note that the flag side edges are not located in the planes
in general due to the spanwise bending of the flag, but the deviation is small.

At Re = 100 (figure 9a), two vortical structures are formed by each flapping motion
of the side edges, which are directed mainly in the longitudinal direction and symmetric
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y
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(b)  Re = 200
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x

Figure 4. Top view of superposition of the longitudinal curves passing points A (left), B
(middle) and C (right) as marked in figure 1: (a) Re = 100; (b) Re = 200; (c) Re = 500.

about the flag centreline. On the other hand, the vortical structure shed from the
trailing edge is relatively weak. As shown in figure 10(a), the pressure difference
across the flag is strong at the centre region, while the positive pressure is significantly
decreased near the side edges due to the vortex shedding. This may explain the
bending of the trailing edge (figure 3a) and the additional damping of the travelling
wave along the side edges (figure 4a). At Re =200 (figure 9b), the vortical structure
shed from the trailing edge becomes stronger and connects those from the side edges
to form a ‘hairpin’ structure with two antennae, which is still symmetric about the
flag centreline. The pressure difference is also increased as the Reynolds number
increases as seen in figure 10(b), and so does the positive pressure near the side edges
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Figure 5. Phase relation of the transverse position and the streamwise and spanwise
positions of point C (figure 1): (a) Re = 100; (b) Re = 200; (c) Re = 500.

(a) (b)

Figure 6. Snapshots of the centreline passing point B (figure 1) at Re =500 during (a) the
first-half period and (b) the second-half period.

as compared with that at Re = 100. The increase of the pressure difference together
with the reduction of the viscous force causes the trailing edge to be bended to a less
extent (figure 3b). At Re = 500 (figure 9c), O-shaped vortical structures are shed from
the flag and some thin elongated vortical structures are formed by stretching between
the O-shaped structures. Meanwhile, the pressure difference becomes much stronger
in the centre region and near the side edges as well, and an asymmetry between the
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Figure 8. Time histories of the difference of the spanwise position between points A and C
(figure 1) for H = 1.0 and 1.5 without initial perturbation: (a) Re = 100; (b) Re = 500.

xy planes of z = −0.5 and 0.5 can be seen in figure 10(c). From figure 9 we can see
a significant difference of the vortical structures in the wake of the flag between the
present results and the two-dimensional simulations (Connell & Yue 2007; Huang
et al. 2007). Due to the formation of the structures at the flag side edges, the vortical
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Figure 9. (Colour online) Vortical structures shedding from the flapping flag of H =1.0 at
instant 1 as labelled in figure 2: (a) Re = 100; (b) Re = 200; (c) Re = 500. Supplementary movie
2 available at journals.cambridge.org/flm.

structures shed from the trailing edge are attenuated and the pressure difference
across the flag is reduced, as compared with the two-dimensional case. As a result,
the flag is stabilized by the effect of side edges.

To see more clearly the fluid motion in the wake of the flapping flag, we add some
tracing particles which follow the local fluid velocity but not conversely modify the
fluid motion. The particles are released at (−0.5, ±0.2, ±0.3) with a time interval of
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Figure 10. (Colour online) Pressure contours near the flag in the xy plane of z = −0.5 (left),
0 (middle) and 0.5 (right) at the instant when the trailing edge reaches the minimum transverse
position: (a) Re = 100; (b) Re =200; (c) Re = 500.

0.05 from t = 0. Snapshots of the tracing particles at the instant 1 (figure 2) from
both side view and top view are shown in figure 11. Spiral motions are formed by
the rows of particles from both sides of the flag for the three cases, i.e. Re = 100, 200
and 500. The particles close to the trailing edge are pushed towards the side edges,
and consequently the trailing edge is bended to some extent, which has a stabilization
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(a)  Re = 100

(b)  Re = 200

(c)  Re = 500

Side view Top view

Figure 11. (Colour online) Snapshots of tracing particles at instant 1 as labelled in figure 3,
which are released at (−0.5, ±0.2, ±0.3) with a time interval of 0.05: (a) Re = 100; (b) Re = 200;
(c) Re = 500. Supplementary movie 3 available at journals.cambridge.org/flm.

effect on the flag. The rolling motion in the spanwise direction is intensified as the
Reynolds number increases. At Re = 500 (figure 11c), the flag interacts with the fluid
strongly at the trailing edge and causes a rapid acceleration of the fluid as can be
seen from large spacings of the particles near the trailing edge. This accounts for the
loss of symmetry of the fluid as well as the flag about its centreline as presented in
the previous section.

Similarly, the instantaneous vortical structures shed from the flag of H = 0.5 at
the minimum transverse position are shown in figure 12. Comparing with the case
of H = 1.0 (figure 9), the strength of vortical structures is weakened for H = 0.5. As
the flag width decreases, the pressure difference across the flag is reduced due to the
three-dimensional vortex shedding, and so does the flapping amplitude, which can be
seen by comparing figure 13(a) with figure 10(c). Furthermore, we increase the flag
density to ρ = 2.0 for the flag of H = 0.5, and the instantaneous vortical structures
are displayed in figure 14. The vortical structures becomes stronger but the frequency
is decreased as compared with the case of H = 0.5 and ρ =1.0. Since the vortex
shedding causes the decrease of the pressure difference across the flag, the pressure
difference of the case of H = 0.5 and ρ =2.0 is not as strong as that of H = 1.0 and
ρ = 1.0 by comparing figure 13(b) with figure 10(c). As the flag density increases,
however, a vortex procession is generated behind a flag at Re = 500 as shown in



Three-dimensional simulation of a flapping flag in a uniform flow 319

(a)  Re = 100

(b)  Re = 200

(c)  Re = 500

y

z

x

y

z

x

y

z

x

Figure 12. (Colour online) Vortical structures shedding from the flapping flag of H = 0.5
and ρ = 1.0 at the instant when the trailing edge reaches the minimum transverse
position: (a) Re = 100; (b) Re = 200; (c) Re = 500. Supplementary movie 4 available at
journals.cambridge.org/flm.

figure 14(c). This procession can be seen more clearly in the corresponding animation
available online, which is different from the cases of ρ =1.0 where a pair of alternative
vortical structures is shed during each flapping period. Such vortex procession was
also observed behind the two-dimensional flag model by visualizations of a flowing
soap film (Zhang et al. 2000) and by two-dimensional simulations (Huang et al. 2007).

3.3. Flapping frequency

Figure 15 shows the Strouhal number and the amplitude of flag’s flapping as functions
of the Reynolds number for two flag widths, i.e. H =0.5 and 1.0, and three different
densities, i.e. ρ =0.5, 1.0 and 2.0. Two length scales can be used to define the Strouhal
number: the flag length L or the flapping amplitude A measured as the average
flapping span. Specifically, they are expressed respectively as,

St =
f L

U∞
and St ′ =

f A

U∞
, (23)
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Figure 13. (Colour online) Pressure contours near the flag in the xy plane of z = −0.25 (left), 0
(middle) and 0.25 (right) at the instant when the trailing edge reaches the minimum transverse
position for H = 0.5 and Re = 500: (a) ρ =1.0; (b) ρ = 2.0.

where f denotes the flapping frequency. As shown in figures 15(a) and 15(b), St
remains constant for each case while A is increased slightly as the Reynolds number
increases, which is consistent with the experimental observation of Shelley et al. (2005).
The lack of variation in St and A with the Reynolds number indicates that the flag
inertia dominates over the viscous force exerted on the flag by the surrounding fluid.
Interestingly, St ′ collapses for different ρ to the value around 0.2, while the difference
between H = 0.5 and H = 1.0 is not diminished, as seen in figure 15(c).

Variations of St , St ′ and A with ρ and H can be seen more clearly in figures 16 and
17, respectively. As ρ increases (figure 16), St is decreased while A is increased. As
a result, St ′ is only slightly varied with ρ. If neglecting the three-dimensional effect,
a qualitative analysis for small-amplitude motion (Argentina & Mahadevan 2005)
shows that the flag inertia scales as ρ1f

2HA, while the pressure difference across the
flag scales as ρ0U

2
∞H A/L. Equating the above two forces yields

f ∼
(
ρ0U

2
∞
/
ρ1L

)1/2
or St ∼ ρ−1/2. (24)

The second relationship of (24) is clearly seen in figure 16(a), although the small–
amplitude assumption is no longer valid in the present three-dimensional simulations.
On the other hand, A is increased as f is decreased to maintain the circulation for
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Figure 14. (Colour online) Vortical structures shedding from the flapping flag of H = 0.5
and ρ = 2.0 at the instant when the trailing edge reaches the minimum transverse
position: (a) Re = 100; (b) Re = 200; (c) Re = 500. Supplementary movie 5 available at
journals.cambridge.org/flm.

vortex shedding (Williamson 1996). Moreover, the corresponding two-dimensional
computational results are also included for comparison. Some difference is seen
between the two- and three-dimensional (H = 1.0) results, and it becomes smaller as
ρ increases. It is also noted that a crossover occurs in figure 16(b) due to the fact that
a chaotic state happens for the two-dimensional case when ρ is smaller than 1.0 but is
not too small (results not shown here). The effect of the flag width is then presented in
figure 17 for ρ =1.0 and 4.0. As H increases, St is almost constant while A is increased
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Figure 15. Variations of (a) St, (b) A and (c) St ′ with Re.

at small H, so St ′ is also increased but still remains close to 0.2. The fact that St is
slightly varied with H indicates that (24) is valid by neglecting the three-dimensional
effect for the range of flag width considered here. However, the increase of A with H is
due to the increase of the pressure difference across the flag as shown in § 3.2, indicating
that the three-dimensional effect is more significant at small H. Figure 17 also shows
that for ρ =1.0 the values are not converged to the corresponding two-dimensional
results, except that A is matched at the crossover as seen in figure 16(b). However, the
convergence behaviour is improved for ρ = 4.0. One possible reason for the difference
between the two- and three-dimensional results is that the ratio of the flag width to
the typical mode wavelength is not large enough at ρ = 1 for the two-dimensional
assumption to be valid, and this ratio is increased as ρ increases (Eloy et al. 2008).

The range of St ′ in the present simulations is close to that of 0.22 ∼ 0.31 as reported
by Shelley et al. (2005). Despite of the difference in the Reynolds number, similar
St ′ values were also obtained in two-dimensional simulations (Connell & Yue 2007)
and experiments (Jia et al. 2007), as listed in table 1. More interestingly, Taylor
et al. (2003) calculated the St ′ values of various species of birds, bats and insects
in unconfined cruising flight and found that they are constrained in a narrow range
0.2 <St ′ < 0.4, and Triantafyllou et al. (2000) showed that the St ′ values of swimming
dolphins, sharks and bony fish fall in a similar range. In particular, the birds engaged
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Figure 16. Variations of (a) St , (b) A and (c) St ′ with ρ at Re = 500.

in direct flight have St ′ ≈ 0.2 (Taylor et al. 2003), which is within the range of the
present results. This comparison indicates that the fluid dynamics occurring during
active flying and swimming is similar to that of passive flapping, presumably to obtain
high propulsive efficiency. Recall that the Strouhal number of vortex shedding from
a circular cylinder ranges from 0.12 to 0.2 over a wide range of Reynolds numbers
when periodic vortex shedding is established, and converges to about 0.2 after three-
dimensional shedding modes are formed (Williamson 1996). Here we can see that the
universal Strouhal number of the flapping flag is a result of the wake instability for
the onset of vortex shedding, as proposed for the fish swimming (Triantafyllou et al.
2000).

3.4. Flapping under gravity

In this section, gravity is included in the simulation which is directed along the
negative z-axis. Gravity breaks the symmetry of the flag about its centreline and
causes the flag to sag down. Figure 18 shows time histories of X′, Y ′ and Z′ of points
A, B and C (figure 1) for Re = 200, while three Froude numbers are compared, i.e.
Fr = 0.2, 0.5 and 1.0. The instantaneous flag positions at the four instants as labelled
in figure 18 are shown in figure 19, where we can see clearly the sagging of flag
besides of the flapping motion in the y direction.
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Object Method St ′

Present Three-dimensional flapping flag of H = 1.0 Computation 0.16 ∼ 0.25
Present Three-dimensional flapping flag of ρ = 1.0 Computation 0.12 ∼ 0.26
Present Two-dimensional flapping filament Computation 0.25 ∼ 0.35
Taylor et al. (2003) Active swimming and flying Experiment 0.2 ∼ 0.4
Shelley et al. (2005) Three-dimensional flapping flag Experiment 0.22 ∼ 0.31
Connell & Yue (2007) Two-dimensional flapping filament Computation 0.2 ∼ 0.3
Jia et al. (2007) Two-dimensional flapping filament Experiment ≈ 0.2
Williamson (1996) Circular cylinder Review 0.12 ∼ 0.2

Table 1. Comparison of the Strouhal number defined in terms of flapping amplitude or
cylinder diameter with that of previous studies.
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the axes by arrows denote the corresponding two-dimensional results.

At Fr = 0.2 and 0.5, the flag flaps regularly in the y direction, but apparent phase
difference is seen for the three points due to the sagging of flag as shown in figures 18(a)
and 18(b), unlike the gravity-free cases where points A, B and C are moving almost
in phase and a slight phase difference is caused by the bending of the trailing edge.
Moreover, the upper corner on the trailing edge (point C) undergoes a fast rolling
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Figure 18. (Colour online) For caption see next page.
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Figure 18. (Colour online) Time histories of the streamwise, transverse and spanwise
displacements of points A, B and C (figure 1) from their equilibrium positions for Re = 200:
(a) Fr = 0.2; (b) Fr = 0.5; (c) Fr = 1.0. Points 1, 2, 3 and 4 correspond sequentially to the four
instants adopted in figure 19.

motion near the maximum (and minimum) transverse position during each flapping
period, which is shown in figures 19(a) and 19(b) from instant 3 to instant 4 as well
as in figures 18(a) and 18(b). Comparing with the case of Fr = 0.2, the amplitudes
of all X′, Y ′ and Z′ are increased at Fr = 0.5, indicating a more energetic flapping as
the Froude number increases. The absolute mean values of X′ and Z′ are increased
at Fr = 0.5 since the flag is sagging to a larger extent as evident by comparing
figure 19(a) with figure 19(b). Specifically, all points A, B and C are sagging down
obviously at Fr = 0.5, while only slight sagging is observed for point A at Fr = 0.2
due to the effect of the upward tension force. As a result, the amplitude of Y ′ is
increasing from point A to point C at Fr = 0.2, while no difference at Fr = 0.5.

However, at Fr = 1.0, the flag is wholly sagging down as shown in figure 19(c). The
sagging flag has only a small-amplitude rigid flapping in the y direction due to the
fluid loading, except that the upper corner is rolling up irregularly by disturbance of
the surrounding fluid, as can be seen in figure 18(c). The suppression of the flapping
motion indicates that gravity of the flag overwhelms the pressure difference across the
flag in this case. The stabilization effect of gravity can be understood by resorting to a
hanging flag in an axial flow, where gravity is directed along the streamwise direction.
Following the linear stability analysis of a two-dimensional flag in a uniform axial
flow by Connell & Yue (2007), the criterion for existence of flapping can be written
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Figure 19. (Colour online) For caption see next page.
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Figure 19. (Colour online) Instantaneous positions of a flapping flag at the four instants as
labelled in figure 18 for Re =200: (a) Fr =0.2; (b) Fr = 0.5; (c) Fr =1.0. Supplementary movie
6 available at journals.cambridge.org/flm.

as
ρ

ρ + cm

> σ̃ + γ̃ k2, (25)

where cm = ma/ρ0L with ma the added mass, σ̃ denotes the tension force, γ̃ denotes the
bending rigidity, k denotes the wavenumber and all quantities are dimensionless. Note
that the flag motion equation (3) is non-dimensionalized using the flag density ρ1 as the
characteristic density, while the fluid density ρ0 is adopted in non-dimensionalization
of (25), i.e. ρ0U

2
∞L for the tension force and ρ0U

2
∞L3 for the bending rigidity. The

tension force induced by the viscous shear is written as 1.3ρ0U
2
∞LRe−0.5(1−

√
x/L), and

ρ1g(L−x) by gravity. Taking the maximum value and making non-dimensionalization,
we have

σ̃ = 1.3Re−0.5 + ρFr . (26)

By substituting (26) into (25), we can easily see that the fluid–flag system is more
stable after including gravity. Despite of the obvious difference between the present
computational model and the hanging flag in an axial flow, some similarities can be
found because the sagging flag has an inclined angle with the free stream, which can
be decomposed into the components parallel and normal to the flag, and so does
gravity. Firstly, the longitudinal tension force is increased by gravity which competes
with the pressure difference and stabilizes the flag. As Fr increases, the flag is more
sagging down, so the parallel component of gravity increases while that of the free
stream decreases. Secondly, the effect of ρ changes after including gravity. In the
gravity-free cases, the fluid–flag system becomes more unstable as ρ increases, as
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dictated in (25). However, after including gravity, the system becomes more stable as
ρ increases if Fr is larger than a certain value, which can be seen easily by substituting
(26) into (25) and was also observed in our simulations (results not shown here).

For regular flapping under gravity, effects of the Froude number on the transverse
flapping amplitude of point C (denoted by AC), the average sagging height of point C
(denoted by Sh) and the Strouhal number (St and St ′ defined in (23)) are represented
in figure 20. As Fr increases, both AC and Sh are increased as shown in figure 20(a),
while St is decreased as shown in figure 20(b). As a result, the Strouhal number (St ′)
based on the flapping amplitude remains close to 0.2 as Fr increases, similar to the
effect of increasing the flag density for the gravity-free cases. Since the flag is straight
and stationary stable if given a small density, we expect that the flag is destabilized
after including gravity. The destabilization effect of gravity is obvious at first glance,
because the flag cannot almost resist the spanwise loading in the straight state. Note
also the difference between the present configuration and the hanging flag in axial
flow as mentioned above. In the hanging-flag case, gravity is mainly balanced by
the longitudinal tension like a pendulum. As Fr increases, the flapping amplitude
is decreased while the flapping frequency is increased by taking into account both
the fluid loading and gravity. However, in the present configuration which is more
prevalent in real situation, the relationship among the various force terms as dictated
in the flag motion equation (4) becomes more complicate during regular flapping. As
an example to demonstrate the destabilization effect of gravity, we choose a light flag
of ρ = 0.2. Figure 21 shows time histories of Y of points A, B and C for Re = 200. At
Fr = 0 (figure 21a), it is shown that the flapping motion is decaying fast. Interestingly,
a stable flapping motion is established with a phase difference among points A, B
and C at Fr = 0.5 after an initial transition stage (figure 21b). The instantaneous
flag positions plotted in figure 22 show that a travelling wave in the upper-forward
direction is formed on the flag under gravity. In this case, the pressure difference across
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Figure 21. Time histories of the transverse position of points A, B and C (figure 1) for ρ = 0.2
and Re = 200: (a) Fr = 0; (b) Fr = 0.5. Points 1, 2, 3 and 4 correspond sequentially to the four
instants adopted in figure 22.

the flag is balanced by gravity of the flag, besides its inertia which is small. Figure 23
compares the pressure contours of Fr = 0 and 0.5 in the xy plane of z = 0, where
the flag position is obtained by interpolation. It is shown that there is no positive
pressure on both sides of the flag behind the stagnation point, since the inclined
angle of the flag to the free stream is small for both cases. However, the pressure
magnitude is obviously increased after including gravity, and so does the pressure
difference across the flag, which together with gravity induces large deformation of
the flag.

4. Conclusions
In this paper, we proposed a three-dimensional computational model for simulating
the flag motion in a uniform flow. The flag motion equation was derived by the energy
method and was solved on a Lagrangian grid. On the other hand, the fluid motion was
governed by the Navier–Stokes equations described on an Eulerian coordinate. The
full coupled system was simulated using the immersed boundary method. Using our
computational data, the nonlinear dynamics of the fluid–flag system after setting up
of flapping was investigated. In the simulations, the flag is vertically supported at its
leading edge. When gravity is excluded, the flag flaps symmetrically about its centreline
at low Reynolds numbers. A longitudinal travelling wave is formed on the flag, which
flattens the deformation in the spanwise direction. Thus, the spanwise bending was
only observed close to the corners on the trailing edge. Due to the decrease of the
viscous force of the fluid and the increase of the pressure difference across the flag,
the trailing edge is more flattened as the Reynolds number increases. At a certain
critical Reynolds number, the flag loses its symmetry about its centreline, which is
attributed to the coupled fluid–flag instability. Moreover, a backward travelling wave
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Figure 22. (Colour online) Instantaneous positions of a flapping flag at the four instants as
labelled in figure 21 for ρ = 0.2, Re = 200 and Fr = 0.5. Supplementary movie 7 available at
journals.cambridge.org/flm.
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Figure 23. (Colour online) Pressure contours near the flag in the xy plane of z = 0 at instant
1 as labelled in figure 22 for ρ = 0.2 and Re = 200: (a) Fr = 0; (b) Fr = 0.5.
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was observed when the flag inertia dominates over the viscous force of the surrounding
fluid. The three-dimensional vortical structures shed from the flag show a significant
difference from the results of two-dimensional simulations. By the flapping of the
two side edges, the longitudinal components are generated. Consequently, hairpin or
O-shaped structures are shed from the flag as a whole, which play an important role
in the dynamics of the fluid–flag system. The three-dimensional vortical structures
cause the decrease of the pressure difference across the flag and the bending of the
trailing edge, thus stabilizing the flag as compared with the two-dimensional case.
The loss of symmetry of the flag about its centreline was also explained by looking
at the acceleration of the fluid at the trailing edge. Then, the flapping frequency was
studied using two Strouhal numbers, defined in terms of the flag length or the flapping
amplitude (denoted by St and St ′, respectively). It was shown that St is invariant to
Re, indicating that the flag inertia dominates over the viscous force exerted on the flag
by the surrounding fluid. For this reason, St is changed only slightly for different flag
width but is decreased as ρ increases, consistent with the scaling law St ∼ ρ−1/2. On
the other hand, St ′ remains constant close to 0.2, which is consistent with the values
reported for flying or swimming animals. It was supposed that the universal Strouhal
number is a result of wake instability for the onset of vortex shedding. Moreover,
as H increases, convergences of St , A and St ′ to the two-dimensional results are
improved for large ρ. After including gravity directing along the negative spanwise
direction, the sagging down of the flag and the rolling motion of the upper corner
were observed. Unlike the gravity-free cases, apparent phase difference was seen for
the top, middle and bottom points on the trailing edge due to the sagging of flag.
For regular flapping under gravity, the flapping amplitude and the sagging height are
increased but St is decreased as Fr increases, while St ′ is still close to 0.2. Given a
too large Fr , however, the flag is wholly sagging down without a sustained regular
flapping. Hence, it was demonstrated that gravity has dual effects on the flag stability.
On one side it has a destabilization effect like the flag inertia, which was explained
by resorting to the linear stability analysis of a hanging flag in an axial flow. On
the other side, gravity has a stabilization effect by increasing the longitudinal tension
force. It was shown that a flag is straight and stationary stable without gravity if
given a small density, but a regular inclined travelling wave is established on the flag
by including gravity, which induces an increased pressure difference across the flag.

This work was supported by the Creative Research Initiatives (Centre for Opto-
Fluid-Flexible Body Interaction) of MEST/NRF.

Appendix A
Perturbation of the energy functional E(X) in (1) can be expressed as

℘E(X) = ℘

∫
S

2∑
i,j=1

[
cT
ij

(
Tij − T 0

ij

)2
+ cB

ij

(
Bij − B0

ij

)2
]
ds1 ds2. (A 1)

By applying the perturbation operation ℘ to the first term on the right-hand side
of (A 1), we obtain

℘

∫
S

cT
ij

(
Tij − T 0

ij

)2
ds1 ds2 =

∫
S

2cT
ij

(
Tij − T 0

ij

)
℘Tijds1 ds2 =

∫
S

σij

∂ X
∂si

· ∂℘X
∂sj

ds1 ds2,

(A 2)
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where we defined σij = 4cT
ij (Tij − T 0

ij ) and used Tij = (∂ X/∂si · ∂ X/∂sj ). Here the
summation convention is not applied on i and j (i, j = 1, 2). Using integration by
parts, (A 2) becomes

℘

∫
S

cT
ij

(
Tij − T 0

ij

)2
ds1 ds2 =

∫
S

∂

∂si

(
σij

∂ X
∂sj

· ℘X
)

ds1 ds2 −
∫

S

∂

∂si

(
σij

∂ X
∂sj

)
· ℘Xds1 ds2,

(A 3)

where the first term on the right-hand side can be eliminated by using{
℘X = 0 at the fixed boundary,

σij = 0 at the free boundaries.
(A 4)

Then we apply the perturbation operation ℘ to the second term on the right-hand
side of (A 1) and integrate by parts once, yielding

℘

∫
S

cB
ij

(
Bij − B0

ij

)2
ds1 ds2 =

∫
S

γij

∂2 X
∂si∂sj

· ∂2℘X
∂si∂sj

ds1 ds2

=

∫
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∂

∂sj

(
γij

∂2 X
∂si∂sj

· ∂℘X
∂si

)
ds1 ds2 −

∫
S

∂

∂sj

(
γij

∂2 X
∂si∂sj

)
· ∂℘X

∂si

ds1 ds2, (A 5)

where we defined γij =2cB
ij . If the fixed boundary is simply supported, we have⎧⎪⎪⎨

⎪⎪⎩
℘X = 0,

∂2 X
∂s2

1

= 0,
∂

∂s2

= 0 at the fixed boundary,

∂2 X
∂s2

i

= 0,
∂3 X
∂s3

i

= 0, γij = 0 at the free boundaries.

(A 6)

Otherwise, if the fixed boundary is clamped, we have⎧⎪⎪⎨
⎪⎪⎩

℘X =
∂℘X
∂si

= 0 at the fixed boundary,

∂2 X
∂s2

i

= 0,
∂3 X
∂s3

i

= 0, γij = 0 at the free boundaries.

(A 7)

Using either (A 6) or (A 7), the first term on the right-hand side of (A 5) is eliminated.
Applying integration by parts once again to (A 5) results in

℘

∫
S

cB
ij

(
Bij − B0

ij

)2
ds1 ds2 = −

∫
S

∂2

∂si∂sj

(
γij

∂2 X
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· ℘X
)

ds1 ds2

+

∫
S

∂2

∂si∂sj

(
γij

∂2 X
∂si∂sj

)
· ℘X ds1 ds2, (A 8)

where the first term on the right-hand side is also eliminated by using either (A 6) or
(A 7). In summary, perturbation of the energy functional E(X) results in

℘E(X) = −
∫

S

[
∂

∂si

(
σij

∂ X
∂sj

)
− ∂2

∂si∂sj

(
γij

∂2 X
∂si∂sj

)]
· ℘X ds1 ds2. (A 9)

According to the principle of virtual work, the elastic force is expressed as

Fe = −℘E(X)

℘X
. (A 10)
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Thus the differential form of the elastic force is obtained as given in (2). As shown
above, (2) is valid for both free and fixed boundary conditions, and the fixed condition
can be further classified into simply-supported and clamped conditions.

Appendix B
The Lagrangian coordinate system is shown in figure 1, where the indices of

the Lagrangian points are denoted by (I, J ) in the (s1, s2) directions, respectively.
Note that the structure domain is discretized by a non-uniform grid in Huang &
Sung (2009), but here we just use a uniform grid since the flag is assumed to be
inextensible. Let D1 and D2 denote the difference approximations to the first-order
derivatives of the arc lengths s1 and s2, respectively. Specifically, for an arbitrary
variable φ, the downwind and upwind difference approximations of the arclength s1

are denoted by, respectively,

[D+
1 φ]I,J = (φI+1,J − φI,J )/�s1, (B 1)

[D−
1 φ]I,J = (φI,J − φI−1,J )/�s1. (B 2)

In the same way, we can define D+
2 andD−

2 . Thus, the second-order central difference
approximations are expressed as[

D0
11φ

]
I,J

=
[
D+

1 D−
1 φ

]
I,J

= (φI+1,J − 2φI,J + φI−1,J )/�s2
1 (B 3)

and [
D0

22φ
]
I,J

=
[
D+

2 D−
2 φ

]
I,J

= (φI,J+1 − 2φI,J + φI,J−1)/�s2
2 . (B 4)

The second-order cross difference approximations are

[D+
12φ]I,J = [D+

1 D+
2 φ]I,J = (φI+1,J+1 − φI+1,J − φI,J+1 + φI,J )/�s1 �s2, (B 5)

[D−
12φ]I,J = [D−

1 D−
2 φ]I,J = (φI,J − φI−1,J − φI,J−1 + φI−1,J−1)/�s1 �s2, (B 6)

and we have [D+
21φ]I,J = [D+

12φ]I,J and [D−
21φ]I,J = [D−

12φ]I,J .
The stretching force terms in (4) are discretized as
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where σii =ϕii(Tii − 1) and Tii = D+
i X · D+

i X . Moreover, the shearing force terms are
discretized as, respectively,
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where σ+
12 = σ+

21 = ϕ12D
+
1 X · D+

2 X and σ −
12 = σ −

21 = ϕ12D
+
1 X · D−

2 X . Furthermore,
discretizations of the bending force terms are written as
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and the twisting force terms are equivalent to each other, which are discretized as
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Thus, the elastic force Fe is obtained by summing (B 7)–(B 11). We use the operator
K to represent the discretized form of Fe, i.e.

Fe = K X . (B 12)

Note that the stencil used here for discretization of Fe is symmetric in the s2 direction
in order to avoid numerical errors that cause asymmetry of the flag about its centreline
in the simulation.

Supplementary movies are available at journals.cambridge.org/flm
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